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ABSTRACT

The subject of this paper is the mechanical behavior of rectangular plates subjected to
a combination of axial compression and lateral pressure. Displacements and stresses are
obtained from a Fortran code based on the von Karman plate equations. The effects of

various boundary conditions, nonlinearities, and imperfections are included.




INTRODUCTION

Fatigue life predictions require knowledge of the stresses in a ship under its operating
conditions [Sikora, Dinsenbacher, and Beach (1983)]. Stiffened plates are a basic structural
component of ships and submarines. The mathematical equations governing the deformation
of thin elastic plates and methods for solution of these equations are well-known [Timoshenko
and Woinowsky-Krieger (1959), Szilard (1974), and Hughes (1983)]. The objective of our
work is to use these known mathematical methods to predict the stresses in typical ship
plating.

Plates are subjected to axial tension and compression from longitudinal bending of a ship
due to wave loads. In addition, plates on the bottom are subjected to lateral water pressure;.;
Deck plating boundary conditions may be taken to be simply-supported , whereas bottom
plating boundary conditions are more closely approximated as clamped. Deck plating may
be considered to have an initial geometric imperfection, whereas bottom plating is bowed in
by the water pressure.

We consider a rectangular plate with length a, width b, and thickness t. The structure
is subjected to axial force F, and possibly uniform lateral pressure p (force per unit lateral

area of the plate).







PLATE EQUATIONS

The basic differential equations of nonlinear shallow shell theory are

D7 w=p+ &, (wo+ w)r +Porr (wo + w),yy =2y (wo + w),zy (1)

I
=7 V'@ = [(wo + w),2, ~(wo + 1) (w0 + w) gy ] = (W5 —Woszz Woryy ) (2)

Et
Here (x,y, z) are Cartesian coordinates measured from the center of the plate.
D = Et*/12(1 — v*) is the bending stiffness, E is Young’s modulus, and v is Poisson’s ratio.
wo(,y) is the initial geometric imperfection of the plate midsurface in the z-direction, while
w(x,y) is the normal displacement. ®(z,y) is the Airy stress function. Commas denote
partial differentiation with respect to « or y; e.g, ;
0*w 0*w 0*w '

4, — p—
YV W= Wrrzr +2w7rryy +wayyyy - + 2

ozt 0zr?0y? + Jy?

We let u(z,y) and v(z,y) denote the displacements of the plate midsurface in the z and
y directions, respectively. These in-plane displacements can be related to w and ® by using

the strain-displacement relations

€z = Uyp +Woyp W,y +%w,§
_ 1,2
€y = U,y tWo,, W,y W,y
€zy = Uy +v’r +wo,z W,y +w07y W,y +Ww,z W,y
and the constitutive relations
Et
Et
Ny = 1 _V2(6y+1/61')
Et
Ny = — €y
2(1 +v)

The membrane stress resultants (forces per unit length of side) are related to the stress

function by

Nx = q)ayy ) Ny - (I)axxv Nzy = _(Dary




The bending stress resultants (moments per unit length of side) are related to the normal

displacement by

M, = =D(wype +rw,y, ), My = —D(wyy 4vw,es ), Mzy = D(1 = v)w,zy

(3)

The bending stresses (forces per unit area of cross section) acting on the top of sections

parallel to the yz or zz planes, respectively are

6M, 6M,

Op = ——, Oy = ——
$2 7 7Y $2

We consider three different possible sets of boundary conditions:

Loosely-clamped

On z = 45: w=w,,= Ny =0, u= constant, f_g% No(+5,y)dy =F
On y = i% : w=w,,= Ny =0, v= constant, f_%% Ny(x,ig, )dz =0
Rigidly-clamped
On z = 45 :w=wz= Ny =0, u = constant,f_%% Ny(+5,y)dy =F
On y = i%:w:-w,y:Nzy:v:O

Simply-supported
b
On z = +%: w=wy= Ny =0, u= constant, f_zg N, (£%,y)dy=F

On y = i% : W= Wy = Ny =0, v= constant, f% Ny(:v,j-_%)dx =0

_2
2

(6)

The classical buckling load of a simply-supported plate with an integral aspect ratio

% =1,2,3,... is given by —F,,., where
. 4n?D

FCT b




SIMPLIFIED EQUATIONS

For normal displacements w which are smaller than the plate thickness ¢, the nonlinear

terms in (1)-(2) are negligible and we can replace (1)-(2) with the linear approximation

F
N, = R N, = constant C; N, =0 (7)

D V4 w= p + ]Vr(wO + w)-,rr +‘]Vy(uy0 + w)’yy (8)

b
For the boundary conditions (4) and (6) where the lateral edges y = :t§ are free to expand

or contract N, = 0, whereas for the boundary conditions (5) where the lateral edges y = :t_—z—

: vF : : : : C
are restrained N, = -5 If p # 0, equation (8) may be written in the nondimensionalized:
form

—_— Am?F b2 N,
V"w: 12(1 —1/2) (mo-f'w),‘ff‘*' y(mo-f-w),g‘g
F., D
_ wEt? oz ) . . .
where W = g I= 7 etc. The nondimensionalized bending stresses are then
p
given by

o:t?  6M, 1 _ _
= = — (’U),;E +1/w,§g ), etc.

pb? pb? 2(1 —v?)

Note that in the case wy = 0 the normal displacement w increases linearly with the pressure p,
whereas in the case p = 0 the normal displacement w increases linearly with the imperfection
amplitude.

We can investigate the importance of nonlinearities by substituting the linear solution
w to (8) into the right side of (2). The additional membrane stresses S, S,, Sz, are then

determined by

F F
Nx:_b-+tSI:—[—)_+q)’yy7 Ny:t5y+cz®7xx+cv Nzy:tsryz_q)wy




1
—_ v4 ¢ = [(U)o + w),iy ——(’wo + w);a:a: (wO + w),yy] - (w073:y —Wo,zz Wo,yy ) (9)

Et

If p # 0, Equation (9) may be written in the nondimensionalized form

V4@ = [(Wo + W),2; —(To + B) 2z (Wo + W) 35 ) — (Worey —Wo,zz Wos77 )

~ OFE
where ¢ = g The nondimensionalized additional membrane stresses are then given by
D N
Syt pbt _
pb2 - W@,gy etc. (10)

o .. F
Note that the total longitudinal stress at the top of a plate cross section is m +o0,+ 95, etc.,

SOLUTION METHOD

These equations may be solved numerically by superimposing a Fourier series particular
solution plus Levy-type homogeneous solutions with coefficients determined by the prescribed
boundary conditions. This method of solution has been recently used by Kwok, Kang, and

Steele (1991), Bird and Steele (1991, 1992), and Kang, Wu, and Steele (1993). A thoroughly

documented Fortran code was written to implement this solution.

Normal Displacement and Bending Stresses

The governing equations for an isotropic plate under axial compression and lateral pressure
load with no imperfection are from (7) and (8)

Nz:%, Nyzﬂorf—{—, Ngy =0

DJ*w=p+ N; Wy +Ny w,yy
with the clamped boundary conditions from (4) or (5)

Onz=%43: w=w,=0

Onyz:t%: w=w,y,=0

The solution to the problem above is obtained in several stages:




1) First a solution wy for constant pressure load on a clamped plate strip with V, = N, =0

is obtained. This particular solution that satisfies

4 _ P
\VARY: D (11)

wy = A (l — (2—;/)2)2 (12)

. : : b :
The solution wy has zero rotation and displacement along y = :}:;. From (3) the bending

is of the following form

moment M, is given by

2
M, = —Duw,, = —%Aﬁ (1 _3 (2631) ) and M, = vM,

4
Cocflicient A'in (12) is determined by substituting (12) in (11): A = % b—

The Fourier cosine series for (12) is given by

where

4 r3 nmy pb? —1 12 nm
W, = - / LR o in 27
b o M TS YE3p ((mr)3+(n7r)5) S

23] . . M M a
I'he particular solution w; has zero rotation but nonzero displacement along z = +—

2

. a
2) In order to make the normal displacement zero along z = i-2—, we need to compute a
correction term that will achieve this goal. This new term w,; which is the solution of a

rectangular plate with inplane resultants N, and N, is computed in the following way: A

. nry . . .
solution of the form w, = Z X, (x) cos Ty is assumed, where X, is a function of z only

N odd
and 15 determined from the condition that w, satisfies the plate equation

D V4w = Ny Wypr +Ny W,y (13)

100




. . . a .
with zero rotation and displacement equal to —w; along = = :t§. From the condition that

10, satisfies (13), we obtain the solution
X, (z) = A, coshvyz 4+ B, sinh vz + C,, cosh vy + Dy sinh vy,

where vy and vy are solutions of

o= (5)) s () - a0 <w>

The constants B, and D, can be taken to be zero due to the symmetry about the y-axis, and

the remaining constants A, and B, can be determined by imposing the boundary corditions
a . . .

along © = £—. Then w; + w; is a solution for a plate under lateral pressure p and in-plane

13

resultants N; and N, with zero displacement along all the edges and zero rotation along

a .
T = i;, but nonzero rotation along y = ia

. b ) )
3) In order to make the rotation zero along y = :|:§ we first compute the Fourier coefficients
of rotation on these edges and then obtain a third solution w3 = ws; + w3z with moments

distributed along the edges corresponding to the desired rotations. A solution ws; sinusoidal

in the z-direction is:

h h
way = Z Cr cos mmz (cos pr1y  cosh pg y)

b B
— a cosh 13 cosh py 3

where the parameters p; and p, are the roots of the polynomial

This solution is obtained in a similar manner as for solution ws, except that in this case
mmz

wsy 1s assumed to be of the form ws; = Z Y, (y) cos and Y,,(y) is determined by

m odd

b
imposing the zero displacement boundary condition along y = :1:5. As defined above, ws;




. a .
has zero displacement on all the edges and zero moment M, along r = :5:5. The rotation

b. |
along the edge y = 5 1s given by

m odd

= Z Cim cos

m odd

: b b
roty = —(wary)],ce = Y. Cim cos mTe —py tanh gy — 4+ o tanh pp =
v=2 2 2 (15)

mmnr

Dllm

The rotation along the edge r = % is

mm . mm [ cosh 3y cosh poy
rotr = —(wa; ;)]s = Clm—— sin — —
(ws1.5)] 2 nzo‘:d " 2 (cosh ,ulg cosh pz%

The expression in the previous parentheses is an even function of y, so it can be expanded

in a Fourler cosine series:

rotr = z Clmmsing (Z D]g-,;m cos Tl;g) (16)
a

m odd n odd

where

D 4 /3 coshpyy  cosh pay nry
am = T - cos ——
12 b Jo \ cosh % cosh p; % b Y

dnm | nmw pt — p?
= ——— sin — L 2

2 (e (5)7) (1B + (57)

The moment at the edge y = g 1s:

mnzx
_ _ 2 2
My = D(~wa1,yy —vwstsez )yep = Y. CimD (—pi} + p}) cos
m odd a
mnzT
= Z Fi,, cos
m odd a
Therefore
Flm

C'lm = (17)

D(—pi + 1)
The solution sinusoidal in the y-direction which has zero displacement on the edges and zero

b
moment M, along y = :1:5 is :

10




?

Wsy = Z Csn cos

7 odd

nmy (cosh iz  cosh 1/2.7)>
b

cosh v1 & coshuy §
where 11 and v are roots of (14).

Now the rotation at the edge z = % is

rotz = —(Waze)|z=z = E Can cos oy ( vy tanh —2— + v, tanh %a)

: N odd b
(18)
Z Can cos @ Dian

7 odd b

b
The rotation at the edge y = 3 is given by:

. nmfcoshuvyz coshuyz
roty = (w32y Z an sm——( - _ 2 >

a a
v 2 \cosh 115  cosh vy

= Z CQn SlIl 7 ( Z DZlnm Ccos m;rx> (19)

7 odd m odd

where

dmm . mT vy — VU
Dotnm = 3 Sin—-

The moment at the edge z = —;— is

nm
Mz =D (—w32,a:a: —VW32,yy ) |z=§ = Z CZ'n. ( V1 + l/2) COos —y

N odd b

= Z o, cosﬂ—y-

TLodd b

Therefore
F2n

Dd+ ) =

C2n =

In terms of the Fourier coeﬂ‘icients of quantities rotz, and roty, M,, and M,, we have the

following relationships: From equations (16), (17), (18) and (20) we have:

11




[rote] = [DM12] % [M,] + [DM22] » [M,] (21)

where

mm mm 1
DMI2)ym = Digpm * — *8i0 —— % —————
( ) 12 * . * SIn 2 % D(Iu/é_lu/f)
e 1 )
(DA/IZZ)nm = D22n * m * (Identlty)nm

Similarly from (15), (17), (19) and (20) we have:

[roty] = [DM11] x [M,] + [DM21] * [M,] (22)
where
nm nm 1
DM21) i = Do ¥ — *8in — % ——————|
(DM = Do 2 05 D =)
1

(DMll)nm = Dl]m * E * (Identlty)

D(p3 — 1?)

nm

Lquations (21)-(22) can be written in the matrix notation:

__ | roty
| rotz

DM11 DMI12 M,
DM21 DM?22 M,

Or

(DM} % [M] = rot

Here [DM] is the flexibility matrix and the inverse [DM]~! is the stiffness matrix. To take

advantage of the diagonal matrices DM11 and DM22, we write the following relations:

(M,] = [M]7!x([rotz] — [DM21] * [DM11]7! « [roty])
(M,] = [DM11]=" * (Jroty] — [DM12]  [M.]) (23)

[M] = [DM22]—[DM?21] % [DM11]~! x [DM12]

12




|

After computing the vector solution to equations (23), we have Fourier coefficients of M, and
M, and from (17) and (20) we can compute the Fourier coefficients of w3, the displacement
corresponding to this bending moment. Then w; 4+ wy — ws is the solution which has zero

rotation on all the edges as well as zero displacement.

Additional Membrane Stresses

The governing equation for the additional membrane stresses in a plate with no imperfection

is from (9)

—E—IEV‘*@ = W, — Wl gy (24)
with the boundary conditions
b b
Onr==25: [2,0,, (:i:%, y) dy =0, [3 @4y (i%,y) dy =0, wu = constant
2 2
(25)
Ony= i% : ff% b, (:c, :i:%) dr =0, ff% .y (:c, :i:%) dr =0, v = constant.

The basic idea behind the solution method for calculating the in-plane Airy stress function
® is the use of double Fourier expansions for both ® and the out of plane displacement w.
In order to solve the governing equation (24), we need to calculate the Fourier coefficients
of w from the solution in the previous subsection. The Fourier expansions for w and ® have

the following form:

w= Y ) wijcos (Z—@) cos (%) (26)

; ; a
t1even Jeven

¢ = Z Z ®,; cos (ﬂ> cos (]_7;_y>
— a
2even ) even
With these expansions the boundary conditions (25) for ® will be satisfied. The derivatives
of w are calculated by direct differentiation of (26), and the products of derivatives are

evaluated at each grid point. Then the discrete double Fourier cosine transform is used to

obtain the Fourier coefficients of the right-hand side of (24), which are stored in the Gaussian




curvature matrix K. The Fourier coefficients of ® then follow from
Eth;;
N2 .y 2\ 2
((‘) +(%) )

The in-plane displacements u and v are obtained from the strain-displacement relations.

fori=2.4,..., j7=24.....

An appropriate plane stress solution is added to satisfy the boundary conditions on u and v.




RESULTS
Normal Displacement and Bending Stresses

We first solved the linearized equations (7)-(8) with no imperfection and the loosely-clamped
houndary conditions (4). The shapes of the deflected midsurfaces and values of the nondi-
meusionalized longitudinal and transverse bending stresses for plates of various aspect ratios
. . . a .
and axial load ratios are shown in the figures. Note that for large 3 the normal displacement
and stresses on lines y = constant are nearly uniform at a distance from the ends greater
than the width of the plate. Note that as the axial load ratio — is varied from positive to
cr

negative, the waviness of the plate near the ends increases.

Maximum normal displacements, and maximum and minimum values of the longitudinal
and transverse bending stresses are shown in separate graphs. The location of the maxi-
mum longitudinal bending stresses is always on the centerline y = 0, while the minimum

. . . . a .
longitudinal bending stresses are always at the endpoints z = ig,y = 0. The maximum
transverse bending stresses are always on the centerline y = 0, while the minimum transverse

. : b . .
hending stresses are always on the edgelines y = +5- Note that as the axial load ratio —
2 or
is varied from positive to negative, the maximumn stresses increase and the minimum stresses
usually decrease. Also, note that for most cases the minimum transverse bending stress is
the greatest stress in absolute value.

F
All values of —  were greater than the buckling loads, given in the following table:

a/b 1 1.2 1.4 1.6 2 4 o0
Buckling -2.52 -2.45 -2.41 -2.22 -1.99 -1.81 -1.75
Load F/F,,

. . F
As a check on these results, the maximum normal displacements for the case = 0

(located at the origin # = y = 0) were checked against Roark and Young (1975), the
transverse bending stress distribution on the line x = 0 was verified to be nearly parabolic

for large %, and the buckling loads were checked against Timoshenko and Gere (1961).
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Transverse Bending Stress My6/(pb2), alb =4, F/F,,
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16, F/F, =15

Transverse Bending Stress My6/(pb2), a/b
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Transverse Bending Stress My6/(pb2), alb =4, F/F,,
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1.5

Normal Displacement wEt3/(pb4), alb =2, F/F,




Normal Displacement wEt3/(pb4), ab=4,FF,=15
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0.0249 -
0.0213

0.0177 -~
0.0142 —--

0.0071 -~
0.00354 -




I o
[ e T |
o v

b
t

mmmmmm
—O®M® M~
rrrrrr
ol 88
cof <CQ

b/2

OOY)
w"%’“
%
S50
WSS
9599
9%

¢
XX
1\6‘9’

Y

!

5
o0

lllll
mmmmm
~— o o




=0

Normal Displacement wEt3/(pb4), alb =2, F/F,,
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4, F/F,,

Normal Displacement wEt3/(pb4), a/b




16, F/F,, =0

. Normal Displacement wEt3/(pb4), a/b

0.025 ----
0.0214 -----
0.0178 -~
0.0143 -—

0.00713 -~

0.00356 -~
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Et*/(pb*), alo =1, F/F, = -15
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-1.5

Normal Displacement wEtS/(pb4), alb=2, FIF, =




4, FF,=-15

Normal Displacement wEt3/(pb4), a/b

0.0332 ----
0.0285 -----
0.0237 -

0.019 —--
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0.00474 -




Normal Displacement wEt3/(pb4), alb=16, F/F,=-1.5

0.0331 ---—-
0.0284 -----
0.0236 -
0.0189 - ——
0.00945 - ---

0.00472 -
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Additional Membrane Stresses

We next studied the importance of nonlinearities by solving equation (9) with no imperfection
and the clamped boundary conditions (4) or (5). The graphs shoxliv the nondimensionalized
maximum and minimum additional membrane stresses due to bending. Note that the ad-
ditional membrane stresses are at least an order of magnitude smaller than those in the
preceding section from the linear equations. Note also that the main effect of preventing
lateral displacement of the edges y = :i:g is to increase the additional transverse membrane
stress, whereas the additional longitudinal membrane stress is unaffected.

For these graphs the following parameter values which are typical of ship plating were

chosen:

E = 30,000,000 psi

v=.3

b=36 in
t=.5 in
p =18 psi

The additional membrane stresses corresponding to other parameter values may be obtained

from these same graphs with the vertical axis scaled in accordance with (10);
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Imperfections

Finally, we solved the linearized equations (7)-(8) with no pressure, an imperfection, and the

simply-supported boundary conditions (6). Let us consider imperfection shapes of the form

mmx nwy . . _
wg = COos cos with m=1,3,5,... and n=1,3,5,...
a b
or
. mmx . nwy . ) .
wg = sin sin 2 with m =2,4,6,... and n = 2,4,6, ...
a

where m and n are the number of half waves in the longitudinal and transverse directions,

respectively. For these shapes we obtain the analytical solution
W

F. {mb N n2a \° 41

F\ 2« 2mb

The bending stress resultants then follow {from (3) by differentiation:

2 2
m vn
D (‘” * 7)
M, = — cte.

Fo (mb N n2a\’ i ’
F \2a¢ 2mb

> —1.

Of course, to prevent buckling we require
cr

An alternate imperfection shape proportional to the deflection of the clamped plate under

small uniform pressure without inplane load was also allowed in the Fortran code, but for

brevity we do not report on this case here.

6f




CONCLUSIONS

We have developed a Fortran code for calculating the displacements and stresses in rect-
angular plates subjected to the effects of combined loading, various boundary conditions,
and imperfections. The next step is to extend the code to a three-dimensional assembly

of plates and beams more representative of ship grillages. Progress in the analyses of such

structures has recently been made by Danielson et al (1988, 1990, 1993, 1994).
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